

Life Cycle Asset Management System

Using design data to reduce risks during operations

By Dr. Bruno GERARD, Founder and President OXAND group

Aberdeen – May 30th, 2013

- 1. Context and objectives
- 2. Methodology outline
- 3. Case study
- 4. Conclusions

Spin-off EDF in 2002

 INDEPENDENT INTERNATIONAL CONSULTANCY FIRM SPECIALIZED IN ASSET, AGEING & RISK MANAGEMENT

• FOCUS ON LIFE CYCLE OPTIMISATION OF HIGH RISK CAPITAL INTENSIVE ASSETS

•> £ 1000bn of CAPEX capitalized in SIMEOTM
•> 130 permanent consultants, > £ 15m

TRANSPORT (Railways, Ports...)

ENERGY (Oil & Gas, Nuclear...)

PASS 55 (ISO 55000), ISO 31000, ISO 15288

→ SIMEO[™] SIMULATOR ____

Client's data

1. Context : a quick change in the approach of developing new assets

Projects are getting more and more complex: deeper wells, greater water depth, "extreme" operating conditions

>>> Requirements for greater analysis and control of RISKS, intensive and better use of Data

During the design phase, new projects must integrate new solutions for life extension and deconstruction

Offer a long term vision for earlier decisions minimizing life cycle risks

Balance between CAPEX / OPEX

WHERE ARE THE MAIN TECHNOLOGICAL RISKS

>>> A full framework for optimising design of assets and operations processes to maintain a high level of performance :

Maximize availibility, safety
 Minimize costs linked to unexpected events

> A full framework for maintaining level of risks acceptable during life cycle

> Tools to support the framework and processes

Some Key studies to optimize long term asset performance

Risk-based integrity review

Initial condition evaluation « point zero » Periodic Risk-based integrity review Intervention Optimisation Studies

Design

Operation

P&A

 \land

Overview of the Well Integrity QRA Methodology

Qualitative assessment	Support studies	Quantitative assessment	WI Management
System characterisation	Estimation of potential leakage rates	Quantification of risks (likelihood, severity)	Risk-informed decision- making
Identification of failure modes and causes	Understanding of well behaviour	Ability to predict varying risk levels over time	Optimisation of operational procedures/practices
Assessment of prevention/mitigation controls	Indication of potential threats to WI (corrosion)	Results to cover various scenarios	Ensure ability to produce while managing risks

Business case Context and needs

Context:

- Offshore project
- Pre-FEED phase

>>> Needs:

- Check if proposed cement will contribute to avoid leakage into the geology or atmosphere
- Propose recommendations regarding cement properties
- → Reassure project partners
- → Demonstrate authorities efficiency of well design

Risk identification

Failure Modes and Effects Analysis *Overview*

Qualitative Approach of QRA

- >>> Providing a framework for :
 - Understanding threats to well integrity
 - Identifying component failure modes
 - Characterising failure scenarios
 - Quantifying likelihood of failure
 - Assessing controls in place to prevent failure / mitigate consequences

>>> Library of failure modes and causes:

- Industry & Oxand experience
- Expert opinion
- Industry research projects

Qualitative assessment

• Etc...

Qualitative assessment

Risk identification

Failure Modes and Effects Analysis Leakage Pathway Diagrams

Page 19

Failure Modes and Effects Analysis Leakage Pathway Diagrams

Page 20

Risk identification

Support Studies

Risk identification & estimation

>>> Thermo-mechanical modelling

Indications of likelihood of failures

>>> Leakage rate estimation

• Quantitative estimation of leakage rates (indication of severity)

>>> Calculations of annulus pressures and inventories in reduced integrity conditions

Risk estimation & assessment

Quantitative Risk Assessment Model Results

>>> Quantification of risk:

 Scenarios are classified in risk grids

>>> Prediction of risk levels over time:

 risk levels due to ageing components/materials

A FULL RISK MANAGEMENT SYSTEM FROM DESIGN TO END OF LIFE

A risk-informed decision approach provides benefits for decision making at all stages of the lifecycle

>> Design

Determining optimum well design, component specs...

>>> Operations

Developing operational risk management plans, maintenance strategies...

>>> Abandonment

Planning abandonment to ensure safety, minimise disruption to production...

... when deployed as part of a successful overall risk management process

Thank you